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How many ways are there to arrange a collection of items? You’ve probably encoun-
tered this question before; it often appears in basic math problems for elementary school
students. Innocuous as it seems, we will see that the problem of arrangements underlies
one of the richest and most important areas in abstract mathematics. Its applications ripple
through physics, molecular chemistry, image processing technology, quantum mechanics, and
cryptography.

Let’s begin by posing our question in a more precise way. For any positive integer n, we
want to determine all possible ways for n distinct items to be placed into an ordered set.1

Placements of these items must adhere to two rules: First, a single spot in our set may not
contain more than one item; Second, every spot must be filled. To illustrate, consider the
case where n = 3. We have an empty, “unarranged” set of three items, { , , }, and we
want to determine all possible ways to place the items 1, 2, 3 into this set.

There are multiple ways to solve this problem, and we need to select our method carefully.
One could easily write out all possible arrangements of 1, 2, 3 and find that there are six:
{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {3, 1, 2}, {2, 3, 1}, and {3, 2, 1}. This answer is correct, but
such a straightforward approach does not provide us with enough information to make the
problem interesting. Not only do we want to calculate all possible arrangements of 1, 2, 3,
we want to define useful mathematical relationships between these arrangements.2

The crucial observation needed to define such relationships is that any arrangement can
be converted into any other arrangement by relocating certain items within the arrangement.
For instance, {2, 1, 3} can be converted into {3, 1, 2} by sending 2 to 3’s location and vice
versa, and {3, 1, 2} can be converted into {2, 3, 1} by sending 1 to 2’s location, 2 to 3’s
location, and 3 to 1’s location.

The conversion of one arrangement into another can be easily formalized using functions.3

An arrangement function will take an arrangement as input and relocate items within the
arrangement, thereby outputting another arrangement. To convert {2, 1, 3} into {3, 1, 2},
we define a function f as follows:

f(1) = 1, f(2) = 3, and f(3) = 2.

To convert {3, 1, 2} into {2, 3, 1}, we define a function g such that:

g(1) = 2, g(2) = 3, and g(3) = 1.
1An ordered set is simply a set whose elements are ordered. Specifically, a set S is ordered if for all elements

a and b in S, exactly one of the following is true: a < b, b < a, or a = b. In our sets of arrangements, we
order items from least to greatest, left to right.

2In mathematics, a set whose elements can be formally related to one another is said to have structure.
The structure of a set applies to all elements in the set, is usually defined by some operation on the set, and
will adhere to certain properties. Structures are typically defined by their properties.

3See endnotes for the formal definition of a function.
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It turns out that there are six distinct functions that describe all possible conversions of one
arrangement of 1, 2, 3 into another:4

() leaves the arrangement unchanged

(12) swaps locations of 1 and 2

(13) swaps locations of 1 and 3

(23) swaps locations of 2 and 3

(123) sends 1 to 2’s location, 2 to 3’s location, and 3 to 1’s location

(132) sends 1 to 3’s location, 3 to 2’s location, and 2 to 1’s location

Applying these functions to any arrangement of 1, 2, 3 will give another arrangement of
1, 2, 3, and applying two di↵erent functions to the same arrangement will always produce two
di↵erent arrangements. This means that applying each of these functions to any particular
arrangement of 1, 2, 3 will give us all six arrangements of 1, 2, 3. This is not unique to the
case of n = 3; we can find such functions for every positive integer n. Importantly, the
function () is included in the set of arrangement functions on n items for every n.

Arrangement conversion functions share three important qualities. First, no two items
are sent to the same location in the arrangement; Second, every location in the arrangement
is occupied by an item after a function is applied; Third, every function intakes a set of
three items and outputs the same set of three items.5 Notice that the first two qualities are
equivalent to the rules we used to define placements of n items into an ordered set. When a
function has these two qualities, we call the function a bijection.

By this definition, bijections can only be established between two sets that contain exactly
the same number of items. This is because bijective functions pair each item in the input
set with exactly one item in the output set and leave no items in either set unpaired.6 Since
arrangement conversion functions input and output the same set of items, we call them
bijections from a set (of n items) to itself. The formal name for an arrangement conversion
function is a permutation on a set of n items.

� � � � � �
We will return to permutations shortly, but we now turn our intention to one of the most

important structures in mathematics: groups. Given a set G and a mathematical operation

4Note that function (23) is the same as function f described above, and function (123) is the same as
function g.

5It is crucial to distinguish between sets of items and arrangements of items. Two di↵erent arrangements
of items 1, 2, 3 are two di↵erent orderings of the same set, not two di↵erent sets. An arrangement conversion
function changes the ordering of items in a set; it does not create a new set of items.

6Bijections are powerful tools in mathematics because they enable mathematicians to determine how
many elements are in a set. If A and B are sets and the number of elements in A is known, then finding a
bijection from A to B proves that B has the same number of elements as A. This proof technique garners
amazing results; for instance, it shows that there are as many real numbers between 0 and 1 as there are
real numbers between �1 and 1.

2



denoted �,7 we say that G is a group under operation � if the following four rules are
satisfied:

1) If a and b are any elements in set G and a� b = c, then c is always an element in G.

2) If a, b, and c are any elements in G, then the equality a� (b� c) = (a� b)� c
is always true.8

3) G contains one (and only one) element e, such that for any a in G, a� e = a = e� a.
e is called the identity element of G.

4) For every element a in G, there is one (and only one) element z in G such that
a� z = e = z � a. We say that a and z are each other’s inverses in G.

These four rules are called closure, associativity, identity, and inverse, respectively.

These definitions can be hard to understand without context, so let’s look at a simple ex-
ample. We will use our four rules to prove that the set of all integers {. . . ,�2,�1, 0, 1, 2, . . .}
(commonly denoted as Z) is a group under the operation of addition (denoted +).

First, we know that the sum of any two integers is also an integer, so Z is closed under +.
Second, associativity is an algebraic property of integer addition, so Z is associative under +.
Third, for any integer a, 0 is the only integer such that a+0 = a = 0+a, so 0 is the identity
element of Z under +. Fourth, for any integer a, we have that a+ (�a) = 0 = (�a) + a, so
every integer has an inverse under +. Therefore Z is a group under addition.9

Due to the simplicity of the definition, there are many pairs of sets and operations that
can be classified as groups. Yet when mathematicians study similarities and di↵erences
between various groups, the sets and operations themselves become relatively unimportant.
Mathematicians focus mainly on the structure of a group; that is, the way that elements
in set G are related to one another by operation �. Two groups may have no structural
similarities, have some structural similarities, or have identical structures. When two groups
have identical structures, we say that they are isomorphic.

Formally, an isomorphism between a group G with operation � and a group H with
operation ⌦ is an operation-preserving bijection f from G to H. When we say that f is an
operation-preserving bijection, we mean that f is a bijective function, and that if a and b are
in set G, then f(a� b) = f(a)⌦ f(b). That is, if two elements in G are in some way related
under operation �, then f sends these elements to two elements in H that are related in the
same way under operation ⌦.

Again, this definition is best explained through example. We will show that the group
of all integers Z under addition is isomorphic to the group of all even integers 2Z under

7Addition, subtraction, multiplication, division, and exponentiation are examples of basic mathematical
operations. We use the � notation to discuss any operation, without specifying one in particular.

8On both sides of this equation, elements a, b, and c appear in the same order. In groups, we do not
assume that a� b is equivalent to b� a.

9However, Z is not a group under the operation of multiplication, because 1 is the identity element under
multiplication, and for an integer a, the expression a ⇥ b = 1 is only true when b = 1

a . Therefore b not an
integer unless a = 1, so the group of integers does not contain integer inverses under ⇥. This means that
the group inverse rule is not satisfied, and Z is not a group under ⇥.
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addition.10 First, we establish a bijection f between Z and 2Z. Define a function f such
that for any z in Z, f(z) = 2z. No two di↵erent integers are sent to the same even integer,
and every even integer is mapped to by some integer, so f is a bijection. Next, we prove that
f is operation preserving. Let x and y be any integers. By the distributive law for integer
addition, 2(x + y) = 2x + 2y, so f is operation-preserving. We have thereby established an
isomorphism between Z and 2Z.11

As you may have already guessed, the set of permutations (arrangement functions) for a
collection of n items is a group under the operation of function composition.12 Let Pn be the
set of all permutations on a collection of n items (e.g., P3 = {(), (12), (13), (23), (123), (132)}).
Recall that applying any permutation in Pn to an arrangement of n items gives another
arrangement of n items. This su�ces to show group closure of Pn under function composition,
since the composition of two permutations in Pn is another permutation in Pn. Function
composition is always an associative operation, so Pn satisfies group associativity. We’ve
noted that the permutation () is in Pn for every n; composing () with any permutation p
in Pn leaves p unchanged, so () is the identity element in Pn. Because Pn is the set of all
permutations on n items, for every permutation in Pn, there is another permutation in Pn

which acts to reverse the first permutation. Therefore Pn satisfies the group inverse property
(in P3, permutations (), (12), (13), and (23) are their own inverses, and (123) and (132) are
each others’ inverses). Hence, Pn is a group.

� � � � � �
One of the most useful and versatile topics in group theory is that of symmetry groups.

A symmetry of an object O is any transformation of O that preserves certain properties of
O. For any object O, a symmetry group of O is any set of symmetries of O that form a
group under the operation of composition.13 Here, the word “object” is used very loosely,
since the concept of symmetry has diverse and far-reaching applications.

In physical space (i.e., 2D, 3D, etc.), we define symmetry to be spatial transformations
that preserve distances in space with respect to a given object. For example, rotating a circle
around its center preserves the distance between any two points on the circle, so rotation is a
symmetry of a circle in 2D space. All possible rotations of a circle (that is, all possible angles
of rotation, from 0� to 360�) is a group under composition. A more complex example is the
Rubick’s Cube, whose symmetries are all possible moves that can be performed such that
the Rubick’s cube is still a cube. The Rubick’s cube can be solved by studying its symmetry
group under composition of moves. The study of spacial symmetry groups is integral to

10The proof that 2Z is a group under + is almost identical to the proof we discussed for Z under +.
11A fascinating consequence of this isomorphism is that there are as many integers as there are even

integers. See footnote 6.
12Function composition is the application of one function f to the result of another function g. That

is, if G is a set and x is an element in g, then the composition of f and g is f(g(x)). When f and g are
combined in this way, the result is a new function h, such that h(x) = f(g(x)). We do not assume that
f(g(x)) = g(f(x)); that is, applying f to the result of g is not necessarily the same as applying g to the
result of f .

13Composing symmetries of O means applying the symmetries to O one after another.
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chemistry and materials science, because molecules and crystal structures are described and
classified by their symmetry groups in 3D space.

The concept of symmetry is further abstracted in physics, where it refers to the preser-
vation of physical properties such as energy, time, momentum, and electromagnetism in a
physical system. An incredible insight in physics came from mathematician Emmy Noether,
who proved that any symmetry corresponds to a physical conservation law. For example,
the symmetry group of spatial translations (i.e., moving from one point in space to another)
conserves momentum, so the translational symmetry corresponds to Newton’s first law of
motion. Symmetry groups are also fundamental to quantum mechanics in ways far too
advanced for our discussion.

We are going to examine one of the simplest physical symmetry groups: the symmetries
of an equilateral triangle. In 3D space, there are two types of transformations that preserve
distance with respect to an equilateral triangle T : rotations and reflections.14 Label the
verticies of T as 1, 2, and 3, labelling counterclockwise. T has two symmetric rotations
counterclockwise around its center: 120� and 240�, denoted as R1 and R2, respectively. (A
rotation of 360� is the same as a rotation of 0�, so it can be ignored.) T has three symmetric
reflections: over the line through vertex 1 and its center, over the line through vertex 2
and its center, and over the line through vertex 3 and its center, denoted as r1, r2, and
r3, respectively. We also consider leaving T unchanged to be a symmetry of T , and this is
denoted as I. I is the identity element of T ’s symmetry group. To illustrate:

I
1 2

3

R1

3 1

2

R2

2 3

1

r1
1 3

2

r2
3 2

1

r3
2 1

3

Notice that each of these symmetries can be interpreted as a change in the ordering of T ’s
verticies. If we read the the vertex labels counterclockwise for each symmetry, we see that
I = {1, 2, 3}, R1 = {3, 1, 2}, R2 = {2, 3, 1}, r1 = {1, 3, 2}, r2 = {3, 2, 1}, and r3 = {2, 1, 3}.
Then, the set of all symmetries of an equilateral triangle is the same as the set of all possible
arrangements of three items! Moreover, if we start with the arrangement {1, 2, 3}, then we
are able to define T ’s symmetries as the permutations in P3, such that I = (), R1 = (123),
R2 = (132), r1 = (23), r2 = (13), and r3 = (12). It turns out that the group of T ’s
symmetries under composition and the group P3 under function composition are isomorphic
groups.15

Amazing as this result is, it’s only the tip of the iceberg. When studying groups of
permutations, we often pay close attention to collections of permutations within the group
that form a group themselves. Such a collection is called subgroups, because it is contained
within a larger group while also satisfying all properties of a group itself (under the same

14By preserving distance, we mean maintaining the locations of T ’s verticies in space.
15For a complete proof, see the endnotes.
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operation as the group in which it is contained). Any symmetry group is isomorphic to a
subgroup of a group of permutations Pn in which some property of the n items is preserved
by all permutations within that subgroup.

But that’s not all. One of the most fundamental and incredible results in group theory
is called Cayley’s Theorem. Cayley’s Theorem says that absolutely every group in existence
is isomorphic to a subgroup of a group of permutations Pn. The problem of rearrangements
therefore underlies every application of group theory we have seen.
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